Bounds on the spectral radius of Hadamard products of positive operators on lp-spaces

نویسندگان

  • Anton R. Schep
  • ANTON R. SCHEP
  • A. R. Schep
چکیده

Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way that they extend to infinite nonnegative matrices A and B that define bounded operators on the classical sequence spaces lp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Bounds on the Spectral Radius of Hadamard Products of Positive Operators

Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way that they extend to infinite nonnegative matrices A and B that define bounded operators on the classical sequence spaces lp.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

Bounds on the spectral radius of a Hadamard product of nonnegative or positive semidefinite matrices

X. Zhan has conjectured that the spectral radius of the Hadamard product of two square nonnegative matrices is not greater than the spectral radius of their ordinary product. We prove Zhan’s conjecture, and a related inequality for positive semidefinite matrices, using standard facts about principal submatrices, Kronecker products, and the spectral radius.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017